WEEK 3: COMPLEX FOURIER AND LAPLACE INTEGRALS PRESENTED BY SAM AND SCRIBED BY STEVE

1. Complex Integrals

Previously, we saw that for real amplitude $A(x)$ and phase $\phi(x)$, we have the expansion

$$
\int_{0}^{\epsilon} A(x) \exp \left(-\lambda \phi(x) d x \sim \sum_{j=0}^{\infty} a_{j} \lambda^{-(1+j) / k}\right.
$$

where

$$
\begin{aligned}
& A(x)=\sum_{j=l}^{\infty} b_{j} x^{j} \\
& \phi(x)=\sum_{j=k}^{\infty} c_{j} x^{j}
\end{aligned}
$$

and a_{j} is a polynomial in $b_{l}, \ldots, b_{j}, c_{k}^{-1}, c_{k}, \ldots, c_{j}$. For complex $A(z)$, the extension of the result is trivial as we can write

$$
A(z)=\Re\{A\}(z)+i \Im\{A\}(z)
$$

and apply the above result to each summand.
The real work lies in extending ϕ to the complex plane. Suppose that A and ϕ are analytic in a neighbourhood of the origin (so that we may deform our contour of integration without worry).
1.1. Step $\mathbf{1}$ - Evaluation of the One-Sided Integral. Recall that last class we had defined

$$
I_{+}(\lambda)=\int_{\gamma_{+}} A(z) \exp (-\lambda \phi(z)) d z
$$

where γ_{+}is the restriction of our curve γ to the domain $[0, \epsilon]$. We will evaluate I_{+}by making the change of variables $y=\phi(z)^{1 / k}$. Care must be taken in choosing the $k^{\text {th }}$ root, as the expression

$$
y=c_{k}^{1 / k} x\left(1+\frac{c_{k+1}}{c_{k}} x+\cdots+\frac{c_{M}}{c_{k}} x^{M-k}+O\left(x^{M-k+1}\right)\right)^{1 / k}
$$

which we used previously, now defines k different functions, each analytic in a neighbourhood of the origin. Because of this, we define the primitive $k^{\text {th }}$ root by the analytic function

$$
\mathfrak{p}: \mathbb{C} \backslash \mathbb{R}_{<0} \rightarrow K=\{z:-\pi / k<\arg (z)<\pi / k\}
$$

where $\mathfrak{p}\left(u^{1 / k}\right)$ is the unique $z \in K$ such that $z^{k}=u$.
Now, let $\gamma=C \gamma^{\prime}(0)$, for some positive real number C. From our previous results we know $\phi(x) \sim$ $c_{k} z^{1 / k}$, and by assumption $\Re\{\phi(\gamma(t))\} \geq 0$, which forces γ to be in the set of pre-images of the positive real half-plane under the mapping $c_{k} z^{k}$.

Figure 1. The quantity \curlyvee and its image under $c_{k} z^{k}$ in K.

Define $f(x):=\mathfrak{p}\left(\phi(x)^{1 / k}\right)$. Since $\phi(\gamma(t))$ remains in the positive real half-plane, it must always remain in the slit plane, and thus $f\left(\gamma_{+}(t)\right) \subset K$. The change of variables described above becomes

$$
y=f(x)=\eta x\left(1+\frac{c_{k+1}}{c_{k}} x+\cdots+\frac{c_{M}}{c_{k}} x^{M-k}+O\left(x^{M-k+1}\right)\right)^{1 / k}
$$

where $\eta=\curlyvee^{-1} \mathfrak{p}\left(\left(c_{k} \curlyvee^{k}\right)^{1 / k}\right)$ and y fixes 1 (since $\mathfrak{p}(1)=1$). The Chain Rule implies

$$
\eta=\left.f^{\prime}(0) \quad \frac{d}{d t} f\left(\gamma_{+}(t)\right)\right|_{t=0}=\eta \curlyvee,
$$

and the inverse $x=g(y)$ is given by taking $c_{k}^{1 / k} \eta$ in our expansion from last week:

$$
x=\sum_{j=1}^{M-k} e_{j}\left(\frac{y}{\eta}\right)^{j}+O\left(y^{M-k+1}\right),
$$

where e_{j} is a polynomial in c_{k+1}, \ldots, c_{j} which can be made explicit. As in the real case, we now have the expression

$$
I_{+}(\lambda)=\int_{\tilde{\gamma}} \tilde{A}(y) \exp \left(-\lambda y^{k}\right) d y,
$$

where $\tilde{\gamma}=f \circ \gamma_{+}$.
Let p be the endpoint of $\tilde{\gamma}$ at $t=\epsilon, p^{\prime}=\Re(p), \alpha$ be the line segment from the origin to p^{\prime}, and β be the line segment from p^{\prime} to p.

Then $\tilde{\gamma}$ is homotopic to $\alpha+\beta$, the curve obtained by joining the end of α to the beginning of β, and for a function $h(z)$ with analyticity conditions the same as our integrand above

$$
\int_{\tilde{\gamma}} h(z) d z=\int_{\alpha} h(z) d z+\int_{\beta} h(z) d z .
$$

On a compact subset of $K, \Re\left\{y^{k}\right\}$ is bounded below by a positive constant. Thus, on $\beta \subset K$ there exists constants C and θ such that

$$
\left|\tilde{A} \exp \left(-\lambda y^{k}\right)\right| \leq C e^{-\theta \lambda}
$$

Figure 2. The line segments α and β.
and

$$
I_{+}=\int_{\alpha} \tilde{A}(y) \exp \left(-\lambda y^{k}\right) d y+R
$$

where $R \rightarrow 0$ exponentially. Applying our previous result to

$$
\int_{\alpha} \tilde{A}(y) \exp \left(-\lambda y^{k}\right) d y
$$

implies

$$
I_{+}(\lambda) \sim \sum_{j=l}^{\infty} a_{j} C(k, j) c_{k}^{-(1+j) / k} \lambda^{-(1+j) / k}
$$

1.2. Step 2 - Two sided integrals. In this section, we consider the expansion of the integral

$$
I(\lambda)=\int_{\gamma} A(z) \exp (-\lambda \phi(z)) d z
$$

where $\gamma:[-\epsilon, \epsilon] \rightarrow \mathbb{C}$. To reduce this to the 1 -sided integral, we define the contour $\gamma_{-}:[0, \epsilon] \rightarrow \mathbb{C}$ by $t \mapsto \gamma(-t)$. As we have changed direction, we have $I=I_{+}-I_{-}$, where I_{-}is the integral along γ_{-}.

The only difference between I_{+}and I_{-}is the difference between the curves γ_{+}and γ_{-}, which affects our choice of η, however it must be the case that $\eta_{-}=\eta_{+} / \omega$ for some $\omega^{k}=1$. Let the inverses for $y=\phi(x)^{1 / k}$ be given by $g_{+}(y)$ and $g_{-}(y)$ on the two curves, so $g_{-}(y)=g_{+}(\omega y)$. We also produce amplitudes $\tilde{A}_{+}(y)$ and $\tilde{A}_{-}(y)$ satisfying

$$
\begin{aligned}
\tilde{A}_{+}(y) & =A\left(g_{+}(y)\right) \cdot g_{+}^{\prime}(y) \\
\tilde{A}_{-}(y) & =A\left(g_{-}(y)\right) \cdot g_{-}^{\prime}(y) \\
& =A\left(g_{-}(\omega y)\right) \cdot g_{-}^{\prime}(\omega y) \\
& =\omega \tilde{A}_{+}(\omega y) .
\end{aligned}
$$

Putting this together, we get $\left[y^{j}\right] \tilde{A}_{-}=\omega^{j-1}\left[y^{j}\right] \tilde{A}_{+}$, and integrating term-by-term followed by taking the asymptotic expansion of \tilde{A}_{+}tells us $\alpha_{j}=\left(1-\omega^{j+1}\right) a_{j}$, where the a_{j} are the coefficients of $I_{+}(\lambda)$. There are two cases to consider:
(a) When k is even: Since $\phi(z) \sim c_{k} z^{k}, \phi(\gamma(t))$ does a U-turn at the origin, with the tangents to $\phi\left(\gamma_{-}(t)\right)$ and $\phi\left(\gamma_{+}(t)\right)$ coinciding there.

Figure 3. The case when k is even.

As γ_{-}reverses orientation, $\curlyvee_{-}=\gamma^{\prime}(0)=-\gamma_{+}$and

$$
\eta_{-}=\curlyvee_{-}^{-1} \mathfrak{p}\left(\left(c_{k} \curlyvee_{-}^{k}\right)^{1 / k}\right)=-\curlyvee_{+}^{-1} \mathfrak{p}\left(\left(c_{k} \curlyvee_{+}^{k}\right)^{1 / k}\right)=-\eta_{+},
$$

since k is even. This implies $\omega=-1$ and

$$
\alpha_{j}= \begin{cases}2 a_{j} & : j \text { is even } \\ 0 & : o . w\end{cases}
$$

(b) When k is odd: The images of $\Im\left\{\phi\left(\gamma_{-}(t)\right)\right\}$ and $\Im\left\{\phi\left(\gamma_{+}(t)\right)\right\}$ have opposite signs and point in opposite directions.

Figure 4. The case when k is odd.

Thus, the argument of the tangent to $\phi\left(\gamma_{+}(t)\right)$ is $\sigma \pi / 2$ while the argument of $\phi\left(\gamma_{-}(t)\right)$ is $-\sigma \pi / 2$, where $\phi=\operatorname{sgn}\left(\Im\left\{\phi\left(\gamma^{\prime}(0)\right)\right\}\right)$. The arguments differ by $-\sigma \pi$ and shrink by a factor of k when we take the $k^{\text {th }}$ root so again we find that $\curlyvee_{-}=-\curlyvee_{+}$, while now $\eta_{-}=\eta_{+} / \omega$ where $\omega=-e^{i \pi \sigma / k}$.

2. WATSON'S LEMMA

This machinery allows us to prove Watson's Lemma:

Proposition 1. Let $A: \mathbb{R}^{+} \rightarrow \mathbb{C}$ have asymptotic expansion

$$
A(t)=\sum_{m=0}^{\infty} b_{m} t^{\beta_{m}}
$$

with $-1<\Re\left\{\beta_{0}\right\}<\Re\left\{\beta_{1}\right\}<\cdots$ and $\Re\left\{\beta_{m}\right\} \rightarrow \infty$. Then

$$
L(\lambda):=\int_{0}^{\infty} A(t) e^{-\lambda t} d t \sim \sum_{m=0}^{\infty} b_{m} \Gamma\left(\beta_{m}\right) \lambda^{-(1+j) / k}
$$

Proof. Truncating the path in the integral from the positive real line to $[0, \epsilon]$ introduces only an exponentially small error. Writing

$$
A(t)=\sum_{m=0}^{N} b_{m} t^{\beta_{m}}+R_{N}(t)
$$

with $R_{N}(t)=O\left(t^{\Re\left\{\beta_{N+1}\right\}}\right)$ at 0 , we plug the above into $L(\lambda)$ and integrate term by term to get

$$
L(\lambda) \sim \sum_{m=0}^{N} \int_{0}^{\epsilon} b_{m} t^{\beta_{m}} e^{-\lambda t} d t+\int_{0}^{\epsilon} R_{N}(t) e^{-\lambda t} d t
$$

Our previous 'Big-O Lemma' (Lemma 4.2.1 in the text) then implies

$$
\left|\int_{0}^{\epsilon} R_{N}(t) e^{-\lambda t} d t\right| \rightarrow 0
$$

and the finite integrals can be evaluated as Laplace transforms.

3. A Partial Example

We conclude by a (partial) example of how this method can be utilized. Let

$$
A i(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(x t+t^{3} / 3\right)} d t
$$

be the Airy function - we will outline how one can determine the asymptotics of $A i(x)$ as $x \rightarrow \infty$.
First, we change variables by setting $t=i \sqrt{x} u$, which implies

$$
A i(x)=\frac{i \sqrt{x}}{2 \pi} \int_{i \mathbb{R}} e^{-x^{3 / 2}\left(u-u^{3} / 3\right)} d u
$$

and hence we have $A(u)=1$ and $\phi(u)=u-u^{3} / 3$ here, with respect to the results above. This gives critical points $u= \pm 1$, where we have the Taylor expansions:

$$
\begin{aligned}
& T^{+}=\frac{2}{3}-(u-1)^{2}-\frac{1}{3}(u-1)^{3} \\
& T^{-}=\frac{-4}{3}+(u+1)^{2}-\frac{1}{3}(u+1)^{3}
\end{aligned}
$$

As we care only about dominant term asymptotics, we truncate the expansions $T^{+}(u)-T^{+}(0)$ and $T^{-}(u)-T^{-}(0)$ to second order and parametrize their real positive solutions by

$$
\begin{aligned}
y^{2} & =T^{+}(u)-T^{+}(0) \\
y_{-}^{2} & =T^{-}(u)-T^{-}(0)
\end{aligned}
$$

Now consider the section of the integral near $u=1$ (one can deal with the integral near $u=-1$ analagously). Here we have $y^{2}=-(u-1)^{2}$ which gives a parametrization $y=i(u-1)$. Thus, the contribution of the full integral near $u=1, I(\lambda)$, is given by

$$
\begin{aligned}
I(\lambda) & \sim-i \int_{1-\epsilon}^{1+\epsilon} e^{-\lambda\left((1-i y)-(1-i y)^{3} / 3\right)} d y \\
& =-i e^{-\lambda^{2 / 3}} \int_{1-\epsilon}^{1+\epsilon} e^{-\lambda\left(y^{2}-i y^{3} / 3\right)} d y \\
& =-i e^{-\lambda^{2 / 3}} \int_{1-\epsilon}^{1+\epsilon} e^{-\lambda y^{2}} \sum_{n=0}^{\infty} \frac{\left(i \lambda y^{3} / 3\right)^{n}}{n!} d y \\
& =-i e^{-\lambda^{2 / 3}} \sum_{n=0}^{\infty} \int_{1-\epsilon}^{1+\epsilon} \frac{e^{-\lambda y^{2}}\left(i \lambda y^{3} / 3\right)^{n}}{n!} d y,
\end{aligned}
$$

and one may now calculate the above integrals. Applying the same approach to the contribution of the full integral near $u=-1$ allows one to recover the asymptotics of $\operatorname{Ai}(x)$.

